Tensile Strength Improvement of LLBC Material for Low Speed Wind Turbine Rotor Blade by Varying Composite Matrix
نویسنده
چکیده
Low-speed wind energy conversion systems generally use Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) as materials for rotor blade because these materials are light weight and hard but expensive. Layer Laminated Bamboo Composite (LLBC) is a bio-composite with bamboo base material which is abundant material and has a relatively lower price. This study investigates tensile strength of LLBC-based bio-composite materials for rotor blades of low-speed wind turbine. This research uses experimental method by varying three types of polymer (Araldite AV138M-1, Araldite AW106, and standard Epoxy Resin) as an adhesive of composite laminate LLBC based on Gombong bamboo. The results show that combination of polymer and bamboo increase the tensile strength ranges from 2 to 7 times as compared to pure bamboo. Araldite AV138 produces the highest tensile strength (230.11 MPa) while Araldite AW106 produces the highest average tensile strength (222.11 MPa). We conclude that combination of bamboo and polymer is a potential material for low speed wind turbine rotor blade.
منابع مشابه
Tensile and Flexural Analysis of a Hybrid Bamboo/Jute Fiber-reinforced Composite with Polyester Matrix as a Sustainable Green Material for Wind Turbine Blades
Recently, there has been a fast growth in research and investigation in the natural fibre composite due to the advantages of these materials, such us low environmental impact, low cost and good mechanical properties compared to synthetic fibre composites. Much effort has gone into increasing the mechanical performance and applications of natural fibes. This paper examines the mechanical propert...
متن کاملDesign and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کاملFault diagnosis of a Wind Turbine Rotor using a Multi-blade Coordinate Framework
Fault diagnosis of a wind turbine rotor is considered. The faults considered are sensor faults and blades mounted with a pitch offset. A fault at a single blade will result in asymmetries in the rotor, which can be applied for fault diagnosis. The diagnosis is derived by using the multiblade coordinate (MBC) transformation also known as the Coleman transformation together with active fault diag...
متن کاملVariable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes
Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...
متن کاملEffect of rotor blade position on Vertical Axis Wind Turbine performance
In this paper a numerical study is presented with the aim of evaluating the performance output of three Vertical Axis Wind Turbine (VAWT) configurations. Here using Computational Fluid Dynamics (CFD) a two-dimensional Multi Reference Frame (MRF) approach has been used to perform steady state simulations. For this purpose an inlet velocity of 4m/s has been used along with rotor blade Tip Speed R...
متن کامل